Enzymatic redesigning of biologically active heparan sulfate.
نویسندگان
چکیده
Heparan sulfate carries a wide range of biological activities, regulating blood coagulation, cell differentiation, and inflammatory responses. The sulfation patterns of the polysaccharide are essential for the biological activities. In this study, we report an enzymatic method for the sulfation of multimilligram amounts of heparan sulfate with specific functions using immobilized sulfotransferases combined with a 3'-phosphoadenosine 5'-phosphosulfate regeneration system. By selecting appropriate enzymatic modification steps, an inactive precursor has been converted to the heparan sulfate having three distinct biological activities, associated with binding to antithrombin, fibroblast growth factor-2, and herpes simplex virus envelope glycoprotein D. Because the recombinant sulfotransferases are expressed in bacteria, and the method uses a low cost sulfo donor, it can be readily utilized to synthesize large quantities of anticoagulant heparin drug or other biologically active heparan sulfates.
منابع مشابه
Regulation of fibroblast growth factor-2 activity by human ovarian cancer tumor endothelium.
Fibroblast growth factor-2 (FGF-2) is a potent angiogenic cytokine that is dependent on heparan sulfate for its biological activity. We have investigated the relationship among heparan sulfate, FGF-2, and the signal-transducing receptors in human, advanced-stage, serous ovarian adenocarcinoma. Using a unique molecular probe, FR1c-Ap, which consisted of a soluble FGF receptor 1 isoform IIIc cova...
متن کاملEvidence that cell surface heparan sulfate is involved in the high affinity thrombin binding to cultured porcine aortic endothelial cells.
It has been postulated that thrombin binds to endothelial cells through, at least in part, cell surface glycosaminoglycans such as heparan sulfate, which could serve as antithrombin cofactor on the endothelium. In the present study, we have directly evaluated the binding of 125I-labeled bovine thrombin to cultured porcine aortic endothelial cells. The thrombin binding to the cell surface was ra...
متن کاملThrombin-dependent MMP-2 activity is regulated by heparan sulfate.
Like most metalloproteases, matrix metalloprotease 2 (MMP-2) is synthesized as a zymogen. MMP-2 propeptide plays a role in inhibition of catalytic activity through a cysteine-zinc ion pairing, disruption of which results in full enzyme activation. A variety of proteases have been shown to be involved in the activation of pro-MMP-2, including metalloproteases and serine proteases. In the previou...
متن کاملToward an artificial Golgi: redesigning the biological activities of heparan sulfate on a digital microfluidic chip.
Using digital microfluidics, recombinant enzyme technology, and magnetic nanoparticles, we have created a functional prototype of an artificial Golgi organelle. Analogous to the natural Golgi, which is responsible for the enzymatic modification of glycosaminoglycans immobilized on proteins, this artificial Golgi enzymatically modifies glycosaminoglycans, specifically heparan sulfate (HS) chains...
متن کاملAn antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells
Heparan sulfate was isolated form the cell surface, cell pellet, and culture medium of exponentially growing as well as postconfluent bovine aortic smooth muscle cells (SMCs). After chromatography on DEAE-Sephadex and Sepharose 4B, the various mucopolysaccharides were examined for their ability to cause growth inhibition in a SMC bioassay. The heparan sulfate isolated from the surface of postco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 52 شماره
صفحات -
تاریخ انتشار 2005